Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Respir Res ; 24(1): 152, 2023 Jun 09.
Article in English | MEDLINE | ID: covidwho-20233721

ABSTRACT

COVID-19-related acute respiratory distress syndrome (CARDS) is associated with high mortality rates. We still have limited knowledge of the complex alterations developing in the lung microenvironment. The goal of the present study was to comprehensively analyze the cellular components, inflammatory signature, and respiratory pathogens in bronchoalveolar lavage (BAL) of CARDS patients (16) in comparison to those of other invasively mechanically ventilated patients (24). In CARDS patients, BAL analysis revealed: SARS-CoV-2 infection frequently associated with other respiratory pathogens, significantly higher neutrophil granulocyte percentage, remarkably low interferon-gamma expression, and high levels of interleukins (IL)-1ß and IL-9. The most important predictive variables for worse outcomes were age, IL-18 expression, and BAL neutrophilia. To the best of our knowledge, this is the first study that was able to identify, through a comprehensive analysis of BAL, several aspects relevant to the complex pathophysiology of CARDS.


Subject(s)
COVID-19 , Pneumonia , Respiratory Distress Syndrome , Humans , Prospective Studies , Bronchoalveolar Lavage Fluid , COVID-19/diagnosis , SARS-CoV-2 , Bronchoalveolar Lavage , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/metabolism
2.
Anesthesiology ; 138(6): 668-669, 2023 Jun 01.
Article in English | MEDLINE | ID: covidwho-2288316
3.
Pulmonology ; 2022 Nov 24.
Article in English | MEDLINE | ID: covidwho-2236646

ABSTRACT

BACKGROUND: The risk of barotrauma associated with different types of ventilatory support is unclear in COVID-19 patients. The primary aim of this study was to evaluate the effect of the different respiratory support strategies on barotrauma occurrence; we also sought to determine the frequency of barotrauma and the clinical characteristics of the patients who experienced this complication. METHODS: This multicentre retrospective case-control study from 1 March 2020 to 28 February 2021 included COVID-19 patients who experienced barotrauma during hospital stay. They were matched with controls in a 1:1 ratio for the same admission period in the same ward of treatment. Univariable and multivariable logistic regression (OR) were performed to explore which factors were associated with barotrauma and in-hospital death. RESULTS: We included 200 cases and 200 controls. Invasive mechanical ventilation was used in 39.3% of patients in the barotrauma group, and in 20.1% of controls (p<0.001). Receiving non-invasive ventilation (C-PAP/PSV) instead of conventional oxygen therapy (COT) increased the risk of barotrauma (OR 5.04, 95% CI 2.30 - 11.08, p<0.001), similarly for invasive mechanical ventilation (OR 6.24, 95% CI 2.86-13.60, p<0.001). High Flow Nasal Oxygen (HFNO), compared with COT, did not significantly increase the risk of barotrauma. Barotrauma frequency occurred in 1.00% [95% CI 0.88-1.16] of patients; these were older (p=0.022) and more frequently immunosuppressed (p=0.013). Barotrauma was shown to be an independent risk for death (OR 5.32, 95% CI 2.82-10.03, p<0.001). CONCLUSIONS: C-PAP/PSV compared with COT or HFNO increased the risk of barotrauma; otherwise HFNO did not. Barotrauma was recorded in 1.00% of patients, affecting mainly patients with more severe COVID-19 disease. Barotrauma was independently associated with mortality. TRIAL REGISTRATION: this case-control study was prospectively registered in clinicaltrial.gov as NCT04897152 (on 21 May 2021).

4.
J Clin Med ; 12(3)2023 Jan 29.
Article in English | MEDLINE | ID: covidwho-2216476

ABSTRACT

BACKGROUND: Investigating the health-related quality of life (HRQoL) after intensive care unit (ICU) discharge is necessary to identify possible modifiable risk factors. The primary aim of this study was to investigate the HRQoL in COVID-19 critically ill patients one year after ICU discharge. METHODS: In this multicenter prospective observational study, COVID-19 patients admitted to nine ICUs from 1 March 2020 to 28 February 2021 in Italy were enrolled. One year after ICU discharge, patients were required to fill in short-form health survey 36 (SF-36) and impact of event-revised (IES-R) questionnaire. A multivariate linear or logistic regression analysis to search for factors associated with a lower HRQoL and post-traumatic stress disorded (PTSD) were carried out, respectively. RESULTS: Among 1003 patients screened, 343 (median age 63 years [57-70]) were enrolled. Mechanical ventilation lasted for a median of 10 days [2-20]. Physical functioning (PF 85 [60-95]), physical role (PR 75 [0-100]), emotional role (RE 100 [33-100]), bodily pain (BP 77.5 [45-100]), social functioning (SF 75 [50-100]), general health (GH 55 [35-72]), vitality (VT 55 [40-70]), mental health (MH 68 [52-84]) and health change (HC 50 [25-75]) describe the SF-36 items. A median physical component summary (PCS) and mental component summary (MCS) scores were 45.9 (36.5-53.5) and 51.7 (48.8-54.3), respectively, considering 50 as the normal value of the healthy general population. In all, 109 patients (31.8%) tested positive for post-traumatic stress disorder, also reporting a significantly worse HRQoL in all SF-36 domains. The female gender, history of cardiovascular disease, liver disease and length of hospital stay negatively affected the HRQoL. Weight at follow-up was a risk factor for PTSD (OR 1.02, p = 0.03). CONCLUSIONS: The HRQoL in COVID-19 ARDS (C-ARDS) patients was reduced regarding the PCS, while the median MCS value was slightly above normal. Some risk factors for a lower HRQoL have been identified, the presence of PTSD is one of them. Further research is warranted to better identify the possible factors affecting the HRQoL in C-ARDS.

5.
J Clin Med ; 11(20)2022 Oct 14.
Article in English | MEDLINE | ID: covidwho-2071543

ABSTRACT

The best timing for endotracheal intubation in patients with coronavirus disease 2019 (COVID-19) hypoxemic acute respiratory failure (hARF) remains debated. Aim of this study is to compare the outcomes of COVID-19 patients with hARF receiving either a trial of non-invasive ventilation (NIV) or intubated with no prior attempt of NIV ("straight intubation"). All consecutive patients admitted to the 25 participating ICUs were included and divided in two groups: the "straight intubation" group and the "NIV" group. A propensity score matching was performed to correct for biases associated with the choice of the respiratory support. Primary outcome was in-hospital mortality. Secondary outcomes were length of mechanical ventilation, hospital stay and reintubation rate. A total of 704 COVID-19 patients were admitted to ICUs during the study period. After matching, 141 patients were included in each group. No clinically relevant difference at ICU admission was found between groups. In-hospital mortality was significantly lower in the NIV group (22.0% vs. 36.2%), with no significant difference in secondary endpoints. There was no significant mortality difference between patients who received straight intubation and those intubated after NIV failure. In COVID-19 patients with hARF it is worth and safe attempting a trial of NIV prior to intubation.

6.
Anesthesiology ; 137(3): 327-339, 2022 09 01.
Article in English | MEDLINE | ID: covidwho-2001451

ABSTRACT

BACKGROUND: The mechanisms underlying oxygenation improvement after prone positioning in COVID-19 acute respiratory distress syndrome have not been fully elucidated yet. The authors hypothesized that the oxygenation increase with prone positioning is secondary to the improvement of ventilation-perfusion matching. METHODS: In a series of consecutive intubated COVID-19 acute respiratory distress syndrome patients receiving volume-controlled ventilation, the authors prospectively assessed the percent variation of ventilation-perfusion matching by electrical impedance tomography before and 90 min after the first cycle of prone positioning (primary endpoint). The authors also assessed changes in the distribution and homogeneity of lung ventilation and perfusion, lung overdistention and collapse, respiratory system compliance, driving pressure, optimal positive end-expiratory pressure, as assessed by electrical impedance tomography, and the ratio of partial pressure to fraction of inspired oxygen (Pao2/Fio2; secondary endpoints). Data are reported as medians [25th to 75th] or percentages. RESULTS: The authors enrolled 30 consecutive patients, all analyzed without missing data. Compared to the supine position, prone positioning overall improved ventilation-perfusion matching from 58% [43 to 69%] to 68% [56 to 75%] (P = 0.042), with a median difference of 8.0% (95% CI, 0.1 to 16.0%). Dorsal ventilation increased from 39% [31 to 43%] to 52% [44 to 62%] (P < 0.001), while dorsal perfusion did not significantly vary. Prone positioning also reduced lung overdistension from 9% [4 to 11%] to 4% [2 to 6%] (P = 0.025), while it did not significantly affect ventilation and perfusion homogeneity, lung collapse, static respiratory system compliance, driving pressure, and optimal positive end-expiratory pressure. Pao2/Fio2 overall improved from 141 [104 to 182] mmHg to 235 [164 to 267] mmHg (P = 0.019). However, 9 (30%) patients were nonresponders, experiencing an increase in Pao2/Fio2 less than 20% with respect to baseline. CONCLUSIONS: In COVID-19 acute respiratory distress syndrome patients, prone positioning overall produced an early increase in ventilation-perfusion matching and dorsal ventilation. These effects were, however, heterogeneous among patients.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , COVID-19/therapy , Humans , Positive-Pressure Respiration/methods , Prone Position/physiology , Pulmonary Gas Exchange/physiology , Respiration, Artificial/methods , Respiratory Distress Syndrome/therapy
8.
J Clin Med ; 11(6)2022 Mar 16.
Article in English | MEDLINE | ID: covidwho-1742512

ABSTRACT

Forms of noninvasive respiratory support (NIRS) have been widely used to avoid endotracheal intubation in patients with coronavirus disease-19 (COVID-19). However, inappropriate prolongation of NIRS may delay endotracheal intubation and worsen patient outcomes. The aim of this retrospective study was to assess whether the CARE score, a chest X-ray score previously validated in COVID-19 patients, may predict the need for endotracheal intubation and escalation of respiratory support in COVID-19 patients requiring NIRS. From December 2020 to May 2021, we included 142 patients receiving NIRS who had a first chest X-ray available at NIRS initiation and a second one after 48-72 h. In 94 (66%) patients, the level of respiratory support was increased, while endotracheal intubation was required in 83 (58%) patients. The CARE score at NIRS initiation was not predictive of the need for endotracheal intubation (odds ratio (OR) 1.01, 95% confidence interval (CI) 0.96-1.06) or escalation of treatment (OR 1.01, 95% CI 0.96-1.07). In conclusion, chest X-ray severity, as assessed by the CARE score, did not allow predicting endotracheal intubation or escalation of respiratory support in COVID-19 patients undergoing NIRS.

9.
Adv Med Sci ; 67(1): 39-44, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1562003

ABSTRACT

PURPOSE: Coronavirus disease 2019 (COVID-19) is a systemic inflammatory condition associated with coagulopathy which may result in severe thromboembolic complications. Cardiac injury is not uncommon in hospitalized COVID-19 patients and therefore we aimed to investigate whether it stems from an abnormal coagulative state. MATERIALS AND METHODS: We conducted a retrospective cross-sectional study on consecutive patients hospitalized due to COVID-19. Traditional coagulation and whole blood rotational thromboelastometry tests were compared between patients with and without cardiac injury. Cardiac injury was defined by increased levels of high-sensitivity cardiac troponin I (hs-cTnI). RESULTS: The study population consisted of 104 patients (67% males, median age 65 years), of whom 40 (38%) developed cardiac injury. No clinical differences in the traditional coagulation parameters were observed between patients with and without cardiac injury. Thromboelastometry analysis revealed abnormal maximum clot firmness (MCF) levels in FIBTEM assay in 80 (77%) patients. No significant differences in MCF values (p â€‹= â€‹0.450) and percentage of abnormal MCF (p â€‹= â€‹0.290) were detected between patients with and without cardiac injury. Cardiac injury - not hypercoagulability - was associated with mortality (p â€‹= â€‹0.016). CONCLUSIONS: No differences in traditional coagulation and rotational thromboelastometry parameters were found among hospitalized COVID-19 patients with and without cardiac injury. Other mechanisms besides hypercoagulability may be a main culprit for cardiac injury in COVID-19 patients.


Subject(s)
COVID-19 , Aged , COVID-19/complications , Cross-Sectional Studies , Female , Humans , Male , Retrospective Studies , SARS-CoV-2 , Thrombelastography
10.
Am J Respir Crit Care Med ; 205(4): 431-439, 2022 02 15.
Article in English | MEDLINE | ID: covidwho-1551111

ABSTRACT

Rationale: The "Berlin definition" of acute respiratory distress syndrome (ARDS) does not allow inclusion of patients receiving high-flow nasal oxygen (HFNO). However, several articles have proposed that criteria for defining ARDS should be broadened to allow inclusion of patients receiving HFNO. Objectives: To compare the proportion of patients fulfilling ARDS criteria during HFNO and soon after intubation, and 28-day mortality between patients treated exclusively with HFNO and patients transitioned from HFNO to invasive mechanical ventilation (IMV). Methods: From previously published studies, we analyzed patients with coronavirus disease (COVID-19) who had PaO2/FiO2 of ⩽300 while treated with ⩾40 L/min HFNO, or noninvasive ventilation (NIV) with positive end-expiratory pressure of ⩾5 cm H2O (comparator). In patients transitioned from HFNO/NIV to invasive mechanical ventilation (IMV), we compared ARDS severity during HFNO/NIV and soon after IMV. We compared 28-day mortality in patients treated exclusively with HFNO/NIV versus patients transitioned to IMV. Measurements and Main Results: We analyzed 184 and 131 patients receiving HFNO or NIV, respectively. A total of 112 HFNO and 69 NIV patients transitioned to IMV. Of those, 104 (92.9%) patients on HFNO and 66 (95.7%) on NIV continued to have PaO2/FiO2 ⩽300 under IMV. Twenty-eight-day mortality in patients who remained on HFNO was 4.2% (3/72), whereas in patients transitioned from HFNO to IMV, it was 28.6% (32/112) (P < 0.001). Twenty-eight-day mortality in patients who remained on NIV was 1.6% (1/62), whereas in patients who transitioned from NIV to IMV, it was 44.9% (31/69) (P < 0.001). Overall mortality was 19.0% (35/184) and 24.4% (32/131) for HFNO and NIV, respectively (P = 0.2479). Conclusions: Broadening the ARDS definition to include patients on HFNO with PaO2/FiO2 ⩽300 may identify patients at earlier stages of disease but with lower mortality.


Subject(s)
COVID-19/therapy , Hypoxia/therapy , Oxygen Inhalation Therapy/methods , Respiratory Distress Syndrome/therapy , Aged , COVID-19/mortality , COVID-19/physiopathology , Female , Humans , Hypoxia/diagnosis , Hypoxia/mortality , Hypoxia/virology , Italy/epidemiology , Male , Middle Aged , Oxygen Inhalation Therapy/mortality , Patient Acuity , Respiration, Artificial/methods , Respiration, Artificial/mortality , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/mortality , Respiratory Distress Syndrome/virology , Treatment Outcome
11.
Biomedicines ; 9(9)2021 Sep 15.
Article in English | MEDLINE | ID: covidwho-1408456

ABSTRACT

The synergic combination of D-dimer (as proxy of thrombotic/vascular injury) and static compliance (as proxy of parenchymal injury) in predicting mortality in COVID-19-ARDS has not been systematically evaluated. The objective is to determine whether the combination of elevated D-dimer and low static compliance can predict mortality in patients with COVID-19-ARDS. A "training sample" (March-June 2020) and a "testing sample" (September 2020-January 2021) of adult patients invasively ventilated for COVID-19-ARDS were collected in nine hospitals. D-dimer and compliance in the first 24 h were recorded. Study outcome was all-cause mortality at 28-days. Cut-offs for D-dimer and compliance were identified by receiver operating characteristic curve analysis. Mutually exclusive groups were selected using classification tree analysis with chi-square automatic interaction detection. Time to death in the resulting groups was estimated with Cox regression adjusted for SOFA, sex, age, PaO2/FiO2 ratio, and sample (training/testing). "Training" and "testing" samples amounted to 347 and 296 patients, respectively. Three groups were identified: D-dimer ≤ 1880 ng/mL (LD); D-dimer > 1880 ng/mL and compliance > 41 mL/cmH2O (LD-HC); D-dimer > 1880 ng/mL and compliance ≤ 41 mL/cmH2O (HD-LC). 28-days mortality progressively increased in the three groups (from 24% to 35% and 57% (training) and from 27% to 39% and 60% (testing), respectively; p < 0.01). Adjusted mortality was significantly higher in HD-LC group compared with LD (HR = 0.479, p < 0.001) and HD-HC (HR = 0.542, p < 0.01); no difference was found between LD and HD-HC. In conclusion, combination of high D-dimer and low static compliance identifies a clinical phenotype with high mortality in COVID-19-ARDS.

12.
Sci Rep ; 11(1): 17730, 2021 09 06.
Article in English | MEDLINE | ID: covidwho-1397894

ABSTRACT

The efficacy of non-invasive ventilation (NIV) in acute respiratory failure secondary to SARS-CoV-2 infection remains controversial. Current literature mainly examined efficacy, safety and potential predictors of NIV failure provided out of the intensive care unit (ICU). On the contrary, the outcomes of ICU patients, intubated after NIV failure, remain to be explored. The aims of the present study are: (1) investigating in-hospital mortality in coronavirus disease 2019 (COVID-19) ICU patients receiving endotracheal intubation after NIV failure and (2) assessing whether the length of NIV application affects patient survival. This observational multicenter study included all consecutive COVID-19 adult patients, admitted into the twenty-five ICUs of the COVID-19 VENETO ICU network (February-April 2020), who underwent endotracheal intubation after NIV failure. Among the 704 patients admitted to ICU during the study period, 280 (40%) presented the inclusion criteria and were enrolled. The median age was 69 [60-76] years; 219 patients (78%) were male. In-hospital mortality was 43%. Only the length of NIV application before ICU admission (OR 2.03 (95% CI 1.06-4.98), p = 0.03) and age (OR 1.18 (95% CI 1.04-1.33), p < 0.01) were identified as independent risk factors of in-hospital mortality; whilst the length of NIV after ICU admission did not affect patient outcome. In-hospital mortality of ICU patients intubated after NIV failure was 43%. Days on NIV before ICU admission and age were assessed to be potential risk factors of greater in-hospital mortality.


Subject(s)
COVID-19/therapy , Intensive Care Units/statistics & numerical data , Intubation, Intratracheal/methods , Noninvasive Ventilation/methods , Respiratory Insufficiency/therapy , Aged , COVID-19/complications , COVID-19/virology , Female , Hospital Mortality , Humans , Logistic Models , Male , Middle Aged , Multivariate Analysis , Outcome Assessment, Health Care/methods , Outcome Assessment, Health Care/statistics & numerical data , Respiratory Insufficiency/etiology , Risk Factors , SARS-CoV-2/physiology
13.
J Anesth Analg Crit Care ; 1(1): 3, 2021 Sep 01.
Article in English | MEDLINE | ID: covidwho-1388853

ABSTRACT

BACKGROUND: Since the beginning of coronavirus disease 2019 (COVID-19), the development of predictive models has sparked relevant interest due to the initial lack of knowledge about diagnosis, treatment, and prognosis. The present study aimed at developing a model, through a machine learning approach, to predict intensive care unit (ICU) mortality in COVID-19 patients based on predefined clinical parameters. RESULTS: Observational multicenter cohort study. All COVID-19 adult patients admitted to 25 ICUs belonging to the VENETO ICU network (February 28th 2020-april 4th 2021) were enrolled. Patients admitted to the ICUs before 4th March 2021 were used for model training ("training set"), while patients admitted after the 5th of March 2021 were used for external validation ("test set 1"). A further group of patients ("test set 2"), admitted to the ICU of IRCCS Ca' Granda Ospedale Maggiore Policlinico of Milan, was used for external validation. A SuperLearner machine learning algorithm was applied for model development, and both internal and external validation was performed. Clinical variables available for the model were (i) age, gender, sequential organ failure assessment score, Charlson Comorbidity Index score (not adjusted for age), Palliative Performance Score; (ii) need of invasive mechanical ventilation, non-invasive mechanical ventilation, O2 therapy, vasoactive agents, extracorporeal membrane oxygenation, continuous venous-venous hemofiltration, tracheostomy, re-intubation, prone position during ICU stay; and (iii) re-admission in ICU. One thousand two hundred ninety-three (80%) patients were included in the "training set", while 124 (8%) and 199 (12%) patients were included in the "test set 1" and "test set 2," respectively. Three different predictive models were developed. Each model included different sets of clinical variables. The three models showed similar predictive performances, with a training balanced accuracy that ranged between 0.72 and 0.90, while the cross-validation performance ranged from 0.75 to 0.85. Age was the leading predictor for all the considered models. CONCLUSIONS: Our study provides a useful and reliable tool, through a machine learning approach, for predicting ICU mortality in COVID-19 patients. In all the estimated models, age was the variable showing the most important impact on mortality.

14.
Crit Care ; 25(1): 263, 2021 07 28.
Article in English | MEDLINE | ID: covidwho-1331949

ABSTRACT

BACKGROUND: Pathophysiological features of coronavirus disease 2019-associated acute respiratory distress syndrome (COVID-19 ARDS) were indicated to be somewhat different from those described in nonCOVID-19 ARDS, because of relatively preserved compliance of the respiratory system despite marked hypoxemia. We aim ascertaining whether respiratory system static compliance (Crs), driving pressure (DP), and tidal volume normalized for ideal body weight (VT/kg IBW) at the 1st day of controlled mechanical ventilation are associated with intensive care unit (ICU) mortality in COVID-19 ARDS. METHODS: Observational multicenter cohort study. All consecutive COVID-19 adult patients admitted to 25 ICUs belonging to the COVID-19 VENETO ICU network (February 28th-April 28th, 2020), who received controlled mechanical ventilation, were screened. Only patients fulfilling ARDS criteria and with complete records of Crs, DP and VT/kg IBW within the 1st day of controlled mechanical ventilation were included. Crs, DP and VT/kg IBW were collected in sedated, paralyzed and supine patients. RESULTS: A total of 704 COVID-19 patients were screened and 241 enrolled. Seventy-one patients (29%) died in ICU. The logistic regression analysis showed that: (1) Crs was not linearly associated with ICU mortality (p value for nonlinearity = 0.01), with a greater risk of death for values < 48 ml/cmH2O; (2) the association between DP and ICU mortality was linear (p value for nonlinearity = 0.68), and increasing DP from 10 to 14 cmH2O caused significant higher odds of in-ICU death (OR 1.45, 95% CI 1.06-1.99); (3) VT/kg IBW was not associated with a significant increase of the risk of death (OR 0.92, 95% CI 0.55-1.52). Multivariable analysis confirmed these findings. CONCLUSIONS: Crs < 48 ml/cmH2O was associated with ICU mortality, while DP was linearly associated with mortality. DP should be kept as low as possible, even in the case of relatively preserved Crs, irrespective of VT/kg IBW, to reduce the risk of death.


Subject(s)
COVID-19/mortality , Respiration, Artificial , Respiratory Distress Syndrome/mortality , Aged , Female , Humans , Intensive Care Units , Intubation , Italy , Male , Middle Aged , Respiratory Distress Syndrome/virology , Tidal Volume
15.
Respir Med ; 187: 106555, 2021 10.
Article in English | MEDLINE | ID: covidwho-1330039

ABSTRACT

Setting the proper level of positive end-expiratory pressure (PEEP) is a cornerstone of lung protective ventilation. PEEP keeps the alveoli open at the end of expiration, thus reducing atelectrauma and shunt. However, excessive PEEP may contribute to alveolar overdistension. Electrical impedance tomography (EIT) is a non-invasive bedside tool that monitors in real-time ventilation distribution. Aim of this narrative review is summarizing the techniques for EIT-guided PEEP titration, while providing useful insights to enhance comprehension on advantages and limits of EIT for current and future users. EIT detects thoracic impedance to alternating electrical currents between pairs of electrodes and, through the analysis of its temporal and spatial variation, reconstructs a two-dimensional slice image of the lung depicting regional variation of ventilation and perfusion. Several EIT-based methods have been proposed for PEEP titration. The first described technique estimates the variations of regional lung compliance during a decremental PEEP trial, after lung recruitment. The optimal PEEP value is represented by the best compromise between lung collapse and overdistension. Later on, a second technique assessing alveolar recruitment by variation of the end-expiratory lung impedance was validated. Finally, the global inhomogeneity index and the regional ventilation delay, two EIT-derived parameters, showed promising results selecting the optimal PEEP value as the one that presents the lowest global inhomogeneity index or the lowest regional ventilation delay. In conclusion EIT represents a promising technique to individualize PEEP in mechanically ventilated patients. Whether EIT is the best technique for this purpose and the overall influence of personalizing PEEP on clinical outcome remains to be determined.


Subject(s)
Lung/physiopathology , Monitoring, Physiologic/methods , Point-of-Care Testing , Positive-Pressure Respiration/methods , Respiratory Distress Syndrome/therapy , Tomography/methods , Electric Impedance , Humans , Positive-Pressure Respiration/adverse effects , Pulmonary Atelectasis/etiology , Pulmonary Atelectasis/prevention & control , Respiratory Distress Syndrome/physiopathology
16.
Case Rep Crit Care ; 2021: 2032197, 2021.
Article in English | MEDLINE | ID: covidwho-1315821

ABSTRACT

Veno-venous extracorporeal membrane oxygenation (V-V ECMO) may be required to treat critically ill patients with COVID-19-associated severe acute respiratory distress syndrome (ARDS). We report the case of a 43-year-old peripartum patient, who underwent two sequential V-V ECMO runs. The first extracorporeal support was established for COVID-19 ARDS, as characterized by severe hypoxemia and hypercapnia (arterial partial pressure of oxygen to inspired oxygen fraction ratio 85 mmHg and arterial partial pressure of carbon dioxide 95 mmHg) and reduction of respiratory system static compliance to 25 mL/cmH2O, unresponsive to mechanical ventilation and prone positioning. After 22 days of lung rest, V-V ECMO was successfully removed and ventilator weaning initiated. A second V-V ECMO was required 7 days later, because of newly onset ARDS due to Pseudomonas aeruginosa ventilator-associated pneumonia. The second V-V ECMO run lasted 12 days. During both V-V ECMO runs, anticoagulation and ventilator settings were titrated through bedside thromboelastometry and electrical impedance tomography, respectively, without major complications. The patient was successfully decannulated, weaned from mechanical ventilation, and finally discharged home without oxygen therapy. At one-month follow-up, she showed good general conditions and no sign of respiratory failure.

17.
Biomolecules ; 11(6)2021 05 26.
Article in English | MEDLINE | ID: covidwho-1310053

ABSTRACT

Angiotensin-converting enzyme 2 (ACE-2) is the main cell entry receptor for severe acute respiratory syndrome-Coronavirus-2 (SARS-CoV-2), thus playing a critical role in causing Coronavirus disease 2019 (COVID-19). The role of smoking habit in the susceptibility to infection is still controversial. In this study we correlated lung ACE-2 gene expression with several clinical/pathological data to explore susceptibility to infection. This is a retrospective observational study on 29 consecutive COVID-19 autopsies. SARS-CoV-2 genome and ACE-2 mRNA expression were evaluated by real-time polymerase chain reaction in lung tissue samples and correlated with several data with focus on smoking habit. Smoking was less frequent in high than low ACE-2 expressors (p = 0.014). A Bayesian regression also including age, gender, hypertension, and virus quantity confirmed that smoking was the most probable risk factor associated with low ACE-2 expression in the model. A direct relation was found between viral quantity and ACE-2 expression (p = 0.028). Finally, high ACE-2 expressors more frequently showed a prevalent pattern of vascular injury than low expressors (p = 0.049). In conclusion, ACE-2 levels were decreased in the lung tissue of smokers with severe COVID-19 pneumonia. These results point out complex biological interactions between SARS-CoV-2 and ACE-2 particularly concerning the aspect of smoking habit and need larger prospective case series and translational studies.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/pathology , Lung/metabolism , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2/genetics , Bayes Theorem , COVID-19/virology , Female , Humans , Lung/pathology , Male , Real-Time Polymerase Chain Reaction , Retrospective Studies , Risk Factors , SARS-CoV-2/isolation & purification , Smokers
18.
Sci Rep ; 11(1): 13418, 2021 06 28.
Article in English | MEDLINE | ID: covidwho-1286475

ABSTRACT

In patients intubated for hypoxemic acute respiratory failure (ARF) related to novel coronavirus disease (COVID-19), we retrospectively compared two weaning strategies, early extubation with immediate non-invasive ventilation (NIV) versus standard weaning encompassing spontaneous breathing trial (SBT), with respect to IMV duration (primary endpoint), extubation failures and reintubations, rate of tracheostomy, intensive care unit (ICU) length of stay and mortality (additional endpoints). All COVID-19 adult patients, intubated for hypoxemic ARF and subsequently extubated, were enrolled. Patients were included in two groups, early extubation followed by immediate NIV application, and conventionally weaning after passing SBT. 121 patients were enrolled and analyzed, 66 early extubated and 55 conventionally weaned after passing an SBT. IMV duration was 9 [6-11] days in early extubated patients versus 11 [6-15] days in standard weaning group (p = 0.034). Extubation failures [12 (18.2%) vs. 25 (45.5%), p = 0.002] and reintubations [12 (18.2%) vs. 22 (40.0%) p = 0.009] were fewer in early extubation compared to the standard weaning groups, respectively. Rate of tracheostomy, ICU mortality, and ICU length of stay were no different between groups. Compared to standard weaning, early extubation followed by immediate NIV shortened IMV duration and reduced the rate of extubation failure and reintubation.


Subject(s)
COVID-19/pathology , Noninvasive Ventilation/methods , Ventilator Weaning/methods , Aged , COVID-19/mortality , COVID-19/virology , Comorbidity , Female , Hospital Mortality , Humans , Intensive Care Units , Kaplan-Meier Estimate , Length of Stay , Male , Middle Aged , Retrospective Studies , SARS-CoV-2/isolation & purification , Time Factors , Tracheostomy
19.
Mycoses ; 64(10): 1223-1229, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1280362

ABSTRACT

BACKGROUND: An increasing number of reports have described the COVID-19-associated pulmonary aspergillosis (CAPA) as being a further contributing factor to mortality. Based on a recent consensus statement supported by international medical mycology societies, it has been proposed to define CAPA as possible, probable, or proven on the basis of sample validity and thus diagnostic certainty. Considering current challenges associated with proven diagnoses, there is pressing need to study the epidemiology of proven CAPA. METHODS: We report the incidence of histologically diagnosed CAPA in a series of 45 consecutive COVID-19 laboratory-confirmed autopsies, performed at Padova University Hospital during the first and second wave of the pandemic. Clinical data, laboratory data and radiological features were also collected for each case. RESULTS: Proven CAPA was detected in 9 (20%) cases, mainly in the second wave of the pandemic (7/17 vs. 2/28 of the first wave). The population of CAPA patients consisted of seven males and two females, with a median age of 74 years. Seven patients were admitted to the intensive care unit. All patients had at least two comorbidities, and concomitant lung diseases were detected in three cases. CONCLUSION: We found a high frequency of proven CAPA among patients with severe COVID-19 thus confirming at least in part the alarming epidemiological data of this important complication recently reported as probable CAPA.


Subject(s)
COVID-19/epidemiology , Invasive Pulmonary Aspergillosis/epidemiology , Respiratory Insufficiency/mortality , Aged , Aged, 80 and over , Aspergillus , COVID-19/mortality , COVID-19/pathology , Comorbidity , Female , Humans , Intensive Care Units , Invasive Pulmonary Aspergillosis/mortality , Invasive Pulmonary Aspergillosis/pathology , Male , Middle Aged , Respiratory Insufficiency/microbiology , Respiratory Insufficiency/pathology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL